Kursplanen innehåller ändringar
Se ändringarKursplan fastställd 2019-02-22 av programansvarig (eller motsvarande).
Kursöversikt
- Engelskt namnFunctional analysis
- KurskodTMA401
- Omfattning7,5 Högskolepoäng
- ÄgareMPENM
- UtbildningsnivåAvancerad nivå
- HuvudområdeMatematik
- InstitutionMATEMATISKA VETENSKAPER
- BetygsskalaTH - Mycket väl godkänd (5), Väl godkänd (4), Godkänd (3), Underkänd
Kurstillfälle 1
- Undervisningsspråk Engelska
- Anmälningskod 20140
- Sökbar för utbytesstudenterJa
Poängfördelning
Modul | LP1 | LP2 | LP3 | LP4 | Sommar | Ej LP | Tentamensdatum |
---|---|---|---|---|---|---|---|
0101 Tentamen 7,5 hp Betygsskala: TH | 7,5 hp |
|
I program
- MPENM - MATEMATIK OCH BERÄKNINGSVETENSKAP, MASTERPROGRAM, Årskurs 1 (obligatoriskt valbar)
- MPENM - MATEMATIK OCH BERÄKNINGSVETENSKAP, MASTERPROGRAM, Årskurs 2 (valbar)
Examinator
- Håkan Andreasson
- Professor, Tillämpad matematik och statistik, Matematiska vetenskaper
Behörighet
Grundläggande behörighet för avancerad nivåSökande med en programregistrering på ett program där kursen ingår i programplanen undantas från ovan krav.
Särskild behörighet
Engelska 6Sökande med en programregistrering på ett program där kursen ingår i programplanen undantas från ovan krav.
Kursspecifika förkunskaper
Linjär algebra samt matematisk analys i en eller flera variabler.
Syfte
Kursen ger en inledning till funktionalanalys, som utgör ett fundamentalt verktyg inom bl a följande centrala områden av matematik och tillämpad matematik nämligen, ordinära och partiella differentialekvationer, matematisk statistik och numerisk analys.
Lärandemål (efter fullgjord kurs ska studenten kunna)
- Redogöra för begreppen vektorrum, normerat rum, Banachrum och Hilbertrum. - Redogöra för grundläggande teori för linjära operatorer på Hilbertrum och speciellt för kompakta och själadjungerade operatorer. - Använda spektralsatsen för kompakta, självadjungerade operatorer. - Tillämpa fixpunktssatser på differential- och integralekvationer. - Kommunicera de logiska sammanhangen mellan de i kursen förekommande begreppen i tal och skrift.Innehåll
Vektorrum. Normerade rum. Banach- och Hilbertrum. Orientering om Lebesgueintegralen. Kontraktiva avbildningar. Fixpunktssatser. Kompakthet. Operatorer i Hilbertrum. Spektralteori för kompakta, självadjungerade operatorer. Fredholms alternativsats. Sturm-Liouvilleteori. Tillämpningar på differential- och integralekvationer.Organisation
Se kursens webbsida.
Litteratur
L. Debnath/P. Mikusinski: Introduction to Hilbert Spaces with Applications, 2nd ed, Academic Press, 1999.
P. Kumlin: Lecture Notes (se kursens webbsida)
Examination inklusive obligatoriska moment
Skriftlig tentamen.
Kursplanen innehåller ändringar
- Ändring gjord på tentamen:
- 2021-04-14: Tentamensdatum Tentamensdatum ändrat av Elisabeth Eriksson
[32946, 53757, 3], Ny tenta för läsår 2020/2021, ordinal 3 (ej nedlagd kurs) - 2020-11-30: Plussning Inte längre plussning av GRULG
Beslut GRULG, plussning ej tillåten - 2020-09-30: Plussning Inte längre plussning av GRULG
Beslut GRULG, plussning ej tillåten
- 2021-04-14: Tentamensdatum Tentamensdatum ändrat av Elisabeth Eriksson