Kursplan fastställd 2021-02-10 av programansvarig (eller motsvarande).
Kursöversikt
- Engelskt namnQuantum mechanics
- KurskodTIF290
- Omfattning4,5 Högskolepoäng
- ÄgareMPPHS
- UtbildningsnivåAvancerad nivå
- HuvudområdeTeknisk fysik
- InstitutionFYSIK
- BetygsskalaTH - Mycket väl godkänd (5), Väl godkänd (4), Godkänd (3), Underkänd
Kurstillfälle 1
- Undervisningsspråk Engelska
- Anmälningskod 85115
- Blockschema
- Sökbar för utbytesstudenterJa
Poängfördelning
Modul | LP1 | LP2 | LP3 | LP4 | Sommar | Ej LP | Tentamensdatum |
---|---|---|---|---|---|---|---|
0119 Tentamen 4,5 hp Betygsskala: TH | 4,5 hp |
|
I program
- MPCAS - KOMPLEXA ADAPTIVA SYSTEM, MASTERPROGRAM, Årskurs 1 (obligatoriskt valbar)
- MPCAS - KOMPLEXA ADAPTIVA SYSTEM, MASTERPROGRAM, Årskurs 2 (valbar)
- MPPHS - FYSIK, MASTERPROGRAM, Årskurs 1 (obligatorisk)
Examinator
- Philippe Tassin
- Biträdande professor, Kondenserad materie- och materialteori, Fysik
Behörighet
Grundläggande behörighet för avancerad nivåSökande med en programregistrering på ett program där kursen ingår i programplanen undantas från ovan krav.
Särskild behörighet
Engelska 6Sökande med en programregistrering på ett program där kursen ingår i programplanen undantas från ovan krav.
Kursspecifika förkunskaper
Grundläggande kunskaper inom: linjär algebra, komplex analys, differentialekvationer, analytisk mekanik, elektromagnetism och kvantmekanik. Studenter bör ha avklarad en introduktionskurs i kvantfysik (t.ex. FUF040 eller motsvarande).Syfte
Kursen är en fortsättning på de inledande kvantfysikkurserna och syftar till att ge studenterna djupare kunskap om icke-relativistisk kvantmekanik, att demonstrera hur kvantmekaniken kan användas för att beskriva mikroskopiska fenomen och att introducera kvantfysikens moderna tillämpningar. Detta ger studenten en insikt om fysiken bakom modern teknik och experiment som inte kan förklaras med klassisk fysik. På så sätt förbereds även studenterna för kurser i exempelvis kondenserade materiens fysik, kvantfältteori, spektroskopi eller kvantdatorer.Lärandemål (efter fullgjord kurs ska studenten kunna)
- Redogöra för och förklara de grundläggande principerna för kvantmekanik
- Redogöra för dynamiken hos kvantmekaniska system i Schrödingers och Heisenbergs beskrivningar
- Förklara korrespondensprincipen och hur den klassiska mekaniken relateras till kvantmekaniken
- Använda WKB-approximationen
- Tillämpa spridningsteori för att beräkna tvärsnittet för partiklar som växelverkar med en potential, en annan partikel eller en kristall
- Redogöra för hur partiklar i ett magnetfält modelleras och använda detta för att förklara Zeemans och Aharonov-Bohms effekter och Landau-nivåer
- Förstå begreppet täthetsoperator och tillämpa det för att beskriva ensembler och öppna system
- Redogöra för och förklara andrakvantisering och tillämpa den på gittervibrationer (fononer) och det elektromagnetiska fältet (fotoner)
- Använda de begrepp som utvecklats i kursen för att beskriva fenomenen spontan och stimulerad emission samt redogöra för dess betydelse för lasrar
- Redogöra för cavity QED och dess tillämpningar
- Läsa vetenskaplig litteratur om ovanstående ämnen
Innehåll
- Stern-Gerlachs experiment; postulat; Diracs formalism, icke-kommuterande observerbara storheter och representationer
- Kvantdynamik: Schrödingers och Heisenbergs beskrivningar; Feynmans vägintegralbeskrivning
- Korrespondensprincipen, Ehrenfests sats
- WKB-approximationen
- Spridningsteori: Lippmann-Schwingers ekvation, Born-approximationen; partialvågsanalys; optiska teoremet
- Laddade partiklar i ett magnetiskt fält, Zeemaneffekten, Landau-nivåer, Aharonov-Bohms effekt
- Täthetsoperatorn, rena och blandade tillstånd, ensembles och öppna system
- Andrakvantiseringen, fononer, fotoner
- Radiativa övergångar; spontan och stimulerad emission; lasrar
- Cavity QED: Jaynes-Cummings Hamiltonian, Rabi-oscillationer, Purcells effekt och stark koppling
Organisation
Kursen omfattar föreläsningar, problemlösning och gästföreläsningar. Deltagande i gästföreläsningar är obligatoriskt.Litteratur
- Modern Quantum Mechanics, 2nd Edition eller Revised Edition av J. J. Sakurai and J. Napolitano, Addison-Wesley (köp den boken inför kursstarten)- Anteckningar från Ben Simons kurs i Advanced Quantum Mechanics, Cambridge universitet
- Annat utdelat material
Examination inklusive obligatoriska moment
Examinationen baseras på obligatoriska inlämningsuppgifter som lämnas in under kursens gång och en obligatorisk muntlig tentamen i slutet av kursen. För att erhålla något av de godkända betygen (3, 4 eller 5) krävs åtminstone det betyget både på inlämningsuppgifterna och på den muntliga tentamen, samt deltagande i gästföreläsningarna.Kursens examinator får examinera enstaka studenter på annat sätt än vad som anges ovan om särskilda skäl föreligger, till exempel om en student har ett beslut från Chalmers om pedagogiskt stöd på grund av funktionsnedsättning.