Kursplan fastställd 2020-02-05 av programansvarig (eller motsvarande).
Kursöversikt
- Engelskt namnStatistical learning for big data
- KurskodMVE441
- Omfattning7,5 Högskolepoäng
- ÄgareMPENM
- UtbildningsnivåAvancerad nivå
- HuvudområdeMatematik
- InstitutionMATEMATISKA VETENSKAPER
- BetygsskalaTH - Mycket väl godkänd (5), Väl godkänd (4), Godkänd (3), Underkänd
Kurstillfälle 1
- Undervisningsspråk Engelska
- Anmälningskod 20150
- Sökbar för utbytesstudenterJa
Poängfördelning
Modul | LP1 | LP2 | LP3 | LP4 | Sommar | Ej LP | Tentamensdatum |
---|---|---|---|---|---|---|---|
0120 Projekt 1,5 hp Betygsskala: UG | 1,5 hp | ||||||
0220 Hemtentamen 6 hp Betygsskala: TH | 6 hp |
I program
- MPCAS - KOMPLEXA ADAPTIVA SYSTEM, MASTERPROGRAM, Årskurs 1 (obligatoriskt valbar)
- MPCAS - KOMPLEXA ADAPTIVA SYSTEM, MASTERPROGRAM, Årskurs 2 (valbar)
- MPDSC - DATA SCIENCE OCH AI, MASTERPROGRAM, Årskurs 1 (obligatoriskt valbar)
- MPENM - MATEMATIK OCH BERÄKNINGSVETENSKAP, MASTERPROGRAM, Årskurs 1 (obligatoriskt valbar)
Examinator
- Rebecka Jörnsten
- Professor, Tillämpad matematik och statistik, Matematiska vetenskaper
Behörighet
Grundläggande behörighet för avancerad nivåSökande med en programregistrering på ett program där kursen ingår i programplanen undantas från ovan krav.
Särskild behörighet
Engelska 6Sökande med en programregistrering på ett program där kursen ingår i programplanen undantas från ovan krav.
Kursspecifika förkunskaper
En grundläggande kurs i statistisk slutledning och MVE190 Linjära Statistiska Modeller. Studenter kan också kontakta kursläraren för tillstånd att ta kursen.Syfte
Kursen skall ge förståelse för och övning i tekniker för statistisk analys av stora datamängder.Lärandemål (efter fullgjord kurs ska studenten kunna)
- visa förståelse för centrala begrepp och ideer rörande klassifikation, klustering och dimensionsreducering
- lösa högdimensionella dataanalys-övningar och tolka resultaten av sådana analyser
Innehåll
- Överblick över högdimensionell dataanalys
- Klassifikation: Bayes regel, diskriminantanalys-metoder, närmaste granne klassifikator, klassifikations- och regressions-träd.
- Kostfunktioner, greedy searches, gradient descent, korsvalidering.
- Logistisk regression
- Regulariseringsmetoder. Gles logistisk regression, gles diskriminantanalys.
- Ensemble-metoder: bagging, random projections, random forests.
- Klustering: k-means, hierarkisk klustering, modell-baserad klutering, spektrala metoder.
- Dimensionsreduktion: PCA, kanonisk korrelation, multi-dimensional scaling.
- Speciella teman (urval av följande): nätverk och grafiska modeller, gles kovariansestimering, klustering av nätverk och community detection, nevrala nätverk, matriskomplettering, collaborative filtering.
- Stor-skala lärning: stochastic searches, batch-metoder, online learning.