Kursplanen innehåller ändringar
Se ändringarKursplan fastställd 2021-02-26 av programansvarig (eller motsvarande).
Observera
Obs – kan ej ingå i ChalmersexamenKursöversikt
- Engelskt namnCalculus
- KurskodMVE426
- Omfattning30 Förutbildningspoäng
- ÄgareZBASS
- UtbildningsnivåFörutbildningsnivå
- InstitutionMATEMATISKA VETENSKAPER
- BetygsskalaTH - Mycket väl godkänd (5), Väl godkänd (4), Godkänd (3), Underkänd
Kurstillfälle 1
- Undervisningsspråk Svenska
- Anmälningskod 95112
- Sökbar för utbytesstudenterNej
- Endast studenter med kurstillfället i programplan.
Poängfördelning
Modul | LP1 | LP2 | LP3 | LP4 | Sommar | Ej LP | Tentamensdatum |
---|---|---|---|---|---|---|---|
0120 Tentamen, del A 7,5 fup Betygsskala: TH | 7,5 fup |
| |||||
0220 Tentamen, del B 7,5 fup Betygsskala: TH | 7,5 fup |
| |||||
0320 Tentamen, del C 4 fup Betygsskala: TH | 4 fup |
| |||||
0420 Tentamen, del D 9,5 fup Betygsskala: TH | 9,5 fup |
| |||||
0520 Laboration 1,5 fup Betygsskala: UG | 0,5 fup | 1 fup |
I program
Examinator
- Thomas Wernstål
- Universitetslektor, Analys och sannolikhetsteori, Matematiska vetenskaper
Behörighet
Grundläggande behörighet för grundnivåSärskild behörighet
Matematik 2a eller 2b eller 2c samt Engelska 6Kursspecifika förkunskaper
Motsvarande gymnasiets matematikkurser 2a eller 2b eller 2c.Syfte
Kursen skall, på ett logiskt sammanhängande sätt, ge grundläggande kunskaper i matematisk analys. Kursen skall dessutom ge kunskaper för fortsatta studier.Lärandemål (efter fullgjord kurs ska studenten kunna)
- förstå hur matematiken är uppbyggd av definitioner och satser.
- förenkla algebraiska uttryck.
- lösa linjära ekvationssystem med eliminationsmetoden.
- använda potenslagarna.
- grundläggande geometri och analytisk geometri.
- grundläggande trigonometri.
- lösa trigonometriska ekvationer.
- lösa olikheter.
- definiera och använda absolutbelopp.
- definiera gränsvärdes- och kontinuitetsbegreppen samt beräkna gränsvärden.
- definiera begreppen derivata och deriverbarhet samt beräkna derivatan av vissa elementära funktioner med hjälp av derivatans definition.
- de grundläggande beräkningsreglerna för derivator och beräkna derivator med hjälp av dessa regler.
- skissera de elementära funktionerna och redogöra för deras egenskaper.
- definiera begreppen växande och avtagande funktion samt lokalt maximum och lokalt minimum.
- konstruera funktionsgrafer och bestämma en funktions största och minsta värde.
- definiera begreppet invers funktion, bestämma inversa funktioner och beräkna deras derivator.
- räkna med komplexa tal på såväl rektangulär som polär form.
- lösa algebraiska ekvationer.
- förstå och använda summabeteckningen.
- genomföra induktionsbevis.
- definiera begreppen primitiv funktion, bestämd integral och generaliserad integral.
- de grundläggande beräkningsreglerna för integraler och beräkna såväl obestämda som bestämda integraler med hjälp av dessa regler.
- använda de vanligaste lösningsmetoderna för differentialekvationer.
- formulera, och i vissa fall bevisa, fundamentala satser inom analysen som t.ex. samband mellan kontinuitet och deriverbarhet, medelvärdessatsen, integralkalkylens fundamentalsats och samband mellan area och primitiv funktion.
- tolka gränsvärden, derivator och integraler geometriskt.
- tillämpa sina kunskaper om derivator och integraler på enklare problem.
- grunder i programmering med tillämpningar inom matematik och fysik.
Innehåll
Kursen är uppdelad i fyra delkurser som går i fyra olika läsperioder:- Delkurs A (7,5 fup): Räkneregler för reella tal, faktorisering, rötter, första- och andragradsekvationer, ekvationssystem, olikheter, polynom och rationella uttryck. Grundläggande trigonometri.
- Delkurs B (7,5 fup): Absolutbelopp, komplexa tal på rektangulär form. Potensfunktioner, exponential- och logaritmfunktionerna, trigonometriska funktioner. Trigonometriska ekvationer. Komplexa tal på polär form. Funktionsbegreppet. Gränsvärden, kontinuitet.
- Delkurs C (4 fup): Derivata och tillämpningar, extremvärdesproblem. Derivata av sammansatt funktion, produkt och kvot. Derivator av elementära funktioner. Högre derivator med tillämpningar och extremvärdesproblem. Asymptoter. Kurvkonstruktion. Programmering med Matlab.
- Delkurs D (9,5 fup): Talföljder, summor, induktion. Bestämd och obestämd integral, integration med variabelsubstitution, partiell integration, integration av rationella funktioner och vissa transcendenta funktioner, area, rymdgeometri. Differentialekvationer med tillämpningar.
- Programmering (1,5 fup).
Organisation
Undervisningen bedrivs i form av föreläsningar och övningar.Litteratur
Håkan Blomqvist: Matematik för tekniskt basår, del 1-3, Matematiklitteratur.Examination inklusive obligatoriska moment
Kunskapskontrollen på delkurs A,B,C och D sker genom skriftliga tentamina. Betygsskala TH.
Programmeringsmomentet är obligatorisk del av kursen, med huvudsakligen web-baserad examination. Betygsskala UG.
Avslutad kurs motsvarar till djup och innehåll minst gymnasieskolans kurs Matematik 4.
Kursens examinator får examinera enstaka studenter på annat sätt än vad som anges ovan om särskilda skäl föreligger, till exempel om en student har ett beslut från Chalmers om pedagogiskt stöd på grund av funktionsnedsättning.
Kursplanen innehåller ändringar
- D_EXAM:
- 2024-12-03: Digital tentamen Inte längre digital tentamen av Examinator
[0220 Tentamen 7,5 hp] Ändrat till ingen digital examination inspera - 2024-12-03: Digital tentamen Inte längre digital tentamen av Examinator
[0220 Tentamen 7,5 hp] Ändrat till ingen digital examination inspera - 2024-12-03: Digital tentamen Inte längre digital tentamen av Examinator
[0420 Tentamen 9,5 hp] Ändrat till ingen digital examination inspera - 2024-12-03: Digital tentamen Inte längre digital tentamen av Examinator
[0220 Tentamen 7,5 hp] Ändrat till ingen digital examination inspera - 2024-10-24: Digital tentamen Ändrat till digital tentamen av Tentamensadministration
[0120 Tentamen 7,5 hp] Ändrat till digital examination inspera - 2024-10-24: Digital tentamen Ändrat till digital tentamen av Tentamensadministration
[0120 Tentamen 7,5 hp] Ändrat till digital examination inspera - 2024-10-24: Digital tentamen Ändrat till digital tentamen av Tentamensadministration
[0120 Tentamen 7,5 hp] Ändrat till digital examination inspera
- 2024-12-03: Digital tentamen Inte längre digital tentamen av Examinator
- Ändring gjord på modul:
- 2024-12-03: Digital tentamen Inte längre digital tentamen av Examinator
[0320 Tentamen 4,0 hp] Ändrat till ingen digital examination inspera - 2024-12-03: Digital tentamen Inte längre digital tentamen av Examinator
[0420 Tentamen 9,5 hp] Ändrat till ingen digital examination inspera - 2024-12-03: Digital tentamen Inte längre digital tentamen av Examinator
[0220 Tentamen 7,5 hp] Ändrat till ingen digital examination inspera - 2024-10-24: Digital tentamen Ändrat till digital tentamen av Tentamensadministration
[0120 Tentamen 7,5 hp] Ändrat till digital examination inspera - 2024-10-24: Digital tentamen Ändrat till digital tentamen av Tentamensadministration
[0420 Tentamen 9,5 hp] Ändrat till digital examination inspera - 2024-10-24: Digital tentamen Ändrat till digital tentamen av Tentamensadministration
[0320 Tentamen 4,0 hp] Ändrat till digital examination inspera - 2024-10-24: Digital tentamen Ändrat till digital tentamen av Tentamensadministration
[0220 Tentamen 7,5 hp] Ändrat till digital examination inspera - 2024-09-17: Digital tentamen Ändrat till digital tentamen av Examinator
[0120 Tentamen 7,5 hp] Ändrat till digital examination inspera
- 2024-12-03: Digital tentamen Inte längre digital tentamen av Examinator
- Ändring gjord på tentamen:
- 2024-02-22: Tentamensdatum Tentamensdatum ändrat från 2024-04-13 till 2024-04-20 av Lars Göran Ottosson
[2024-04-13 4,0 hp, 0320] - 2024-02-12: Tentamensdatum Tentamensdatum ändrat från 2024-04-09 till 2024-04-13 av Lars Göran Ottosson
[2024-04-09 4,0 hp, 0320]
- 2024-02-22: Tentamensdatum Tentamensdatum ändrat från 2024-04-13 till 2024-04-20 av Lars Göran Ottosson