Kursplan för Matematisk analys

Kursplanen innehåller ändringar
Se ändringar

Kursplan fastställd 2019-02-21 av programansvarig (eller motsvarande).

Kursöversikt

  • Engelskt namnCalculus
  • KurskodMVE045
  • Omfattning7,5 Högskolepoäng
  • ÄgareTKITE
  • UtbildningsnivåGrundnivå
  • HuvudområdeMatematik
  • InstitutionMATEMATISKA VETENSKAPER
  • BetygsskalaTH - Fem, Fyra, Tre, Underkänd

Kurstillfälle 1

  • Undervisningsspråk Svenska
  • Anmälningskod 52118
  • Sökbar för utbytesstudenterNej
  • Endast studenter med kurstillfället i programplan.

Poängfördelning

0105 Tentamen 7,5 hp
Betygsskala: TH
7,5 hp
  • 29 Okt 2019 em SB
  • 07 Jan 2020 em SB_MU
  • 25 Aug 2020 fm J

I program

Examinator

Gå till kurshemsidan (Öppnas i ny flik)

Behörighet

För kurser på grundnivå inom Chalmers utbildningsprogram gäller samma behörighetskrav som till de(t) program där kursen ingår i programplanen.

Kursspecifika förkunskaper

Kursen förutsätter en viss matematisk mognad som lämpligen inhämtas via de tidigare kurserna i programmet.

Syfte

Kursens syfte är att, tillsammans med övriga matematikkurser, ge en matematisk allmänbildning användbar i fortsatta studier och yrkesverksamhet. Kursen skall ge kunskaper i envariabelanalys nödvändiga för övriga kurser inom IT-programmet.

Lärandemål (efter fullgjord kurs ska studenten kunna)

  • kunna definiera och manipulera elementära funktioner och algebraiska uttryck
  • förklara begreppen derivata och integral och kopplingen dem emellan
  • beräkna integraler både analytiskt och numeriskt
  • förklara optimalitetskriterier
  • kunna lösa enklare differentialekvationer
  • approximera funktioner med polynom samt framställa dem som potensserier
  • kombinera kunskaper om olika begrepp i praktisk problemlösning

Innehåll

Grundläggande analys i en variabel: elementära funktioner, gränsvärdesbegeppet, kontinuitet och deriverbarhet för reella funktioner, medelvärdessatsen, Riemannintegralen, primitiva funktioner och kopplingen till integraler, tillämpningar av intregralberäkningar på volymer av kroppar och längden av kurvor, enklare differentialekvationer, Taylorutvecklingar och approximationer av funktioner, komplexa tal

Organisation

Föreläsningar och övningar.

Litteratur

Calculus, a Completa Course av R. A. Adams Addison Wesley Longman

Examination inklusive obligatoriska moment

Avslutande skriftlig examination. Frivillig dugga som kan ge bonuspoäng till tentan kan förekomma.

Kursplanen innehåller ändringar

  • Ändring gjord på tentamen:
    • 2020-01-06: Plats Plats ändrat från Johanneberg till SB Multisal av annbe
      [2020-01-07 7,5 hp, 0105]
    • 2019-10-26: Plats Plats ändrat från SB Multisal till Samhällsbyggnad av annbe
      [2019-10-29 7,5 hp, 0105]
    • 2019-09-09: Plats Plats ändrat från Johanneberg till SB Multisal av grunnet
      [2019-10-29 7,5 hp, 0105]