Kursplanen innehåller ändringar
Se ändringarKursplan fastställd 2019-02-21 av programansvarig (eller motsvarande).
Kursöversikt
- Engelskt namnCalculus in one variable
- KurskodMVE017
- Omfattning7,5 Högskolepoäng
- ÄgareTKIEK
- UtbildningsnivåGrundnivå
- HuvudområdeMatematik
- InstitutionMATEMATISKA VETENSKAPER
- BetygsskalaTH - Mycket väl godkänd (5), Väl godkänd (4), Godkänd (3), Underkänd
Kurstillfälle 1
- Undervisningsspråk Svenska
- Anmälningskod 51130
- Sökbar för utbytesstudenterNej
- Endast studenter med kurstillfället i programplan.
Poängfördelning
Modul | LP1 | LP2 | LP3 | LP4 | Sommar | Ej LP | Tentamensdatum |
---|---|---|---|---|---|---|---|
0117 Tentamen 6 hp Betygsskala: TH | 6 hp |
| |||||
0217 Laboration 1,5 hp Betygsskala: UG | 1,5 hp |
I program
Examinator
- Jan-Alve Svensson
- Universitetslektor, Algebra och geometri, Matematiska vetenskaper
Behörighet
Grundläggande behörighet för grundnivåSökande med en programregistrering på ett program där kursen ingår i programplanen undantas från ovan krav.
Särskild behörighet
Samma behörighet som det kursägande programmet.Sökande med en programregistrering på ett program där kursen ingår i programplanen undantas från ovan krav.
Kursspecifika förkunskaper
Kursen Inledande matematik I.Syfte
Kursens syfte är att, tillsammans med övriga matematikkurser, ge en matematisk allmänbildning som är så användbar som möjligt i fortsatta studier och teknisk yrkesverksamhet. Kursen skall på ett logiskt och sammanhängande sätt ge sådana kunskaper i matematisk analys i en variabel som är nödvändiga för övriga kurser inom I-programmet.Lärandemål (efter fullgjord kurs ska studenten kunna)
Efter genomgången kurs ska studenten
- förstå och kunna definiera begreppen bestämd integral, primitiv funktion och generaliserad integral, känna till grundläggande satser kring dessa, kunna bevisa vissa av dem, samt kunna använda detta i problemlösning.
- utan hjälpmedel kunna beräkna relativt komplexa integraler med kännedom om vissa primitiva funktioner, med partiell integration, direkt och indirekt variabelbyte samt pratialbråksuppdelning.
- utan hjälpmedel kunna beräkna kroppars volym med skiv- och skalformeln, area av rotationsytor och längder av grafer.
- förstå idén med ordinär differentialekvation och lösning till sådan, samt kunna ställa upp en sån i problemlösning med enklare modellering.
- utan hjälpmedel kunna lösa andra ordningens ordinära differentialekvationer med konstanta koefficienter, så väl homogena som inhomogena.
- förstå begreppen talföljd och serie, konvergens av sådana och känna till grundläggande satser kring dem, kunna bevisa vissa av dem, samt kunna använda dem i problemlösning.
- förstå begreppen potensserie, konvergensintervall av sådan, Maclaurin- och Taylorserie/polynom av en funktion samt kunna bestämma och använda dem i problemlösning.
- med hjälpmedel kunna använda potensserier för beräkning av gränsvärden, seriers summor, approximationer samt lösning av differentialekvationer.
- med hjälp av programvaran MATLAB numeriskt beräkna integraler med olika metoder, med stöd göra feluppskattningar av resultat, samt lösa differentialekvationer av första och andra ordningen, med Eulers metod och inbyggda kommandon.
Innehåll
- Definition och egenskaper hos bestämd integral och generaliserad integral.
- Primitiv funktion och samband med bestämd integral.
- Teknik för bestämning av primitiv funktion: känd primitiv funktion till vissa elementära funktioner, direkt och indirekt variabelbyte, partiell integration och partialbråksuppdelning.
- Numerisk beräkning med feluppskattningar av integraler med trapets- och mittpunktsmetod, Simpsons formel samt inbyggt kommando i MATLAB.
- Beräkning av volymer av kroppar, area av ytor och längd av grafer med hjälp av integral av en reellvärd funktion av en reell variabel.
- Första ordningens linjära och separabla differentialekvationer, andra ordningens linjära differentialekvationer med konstanta koefficienter. Enklare modellering i samband med detta.
- Lösning av och modellering med första och andra ordningens differentialekvation med hjälp av programvaran MATLAB.
- Talföljder, serier och olika kriterier för deras konvergens.- Potensserier och deras egenskaper, samt Maclaurin- och Taylorserier/polynom av funktioner.
Organisation
Undervisningen ges i form av föreläsningar samt lektioner och laborationer i mindre grupper. Mer detaljerad information ges på kursens webbsida före kursstart.
Litteratur
Kurslitteratur anges på kursens webbsida före kursstart.
Examination inklusive obligatoriska moment
Mer detaljerad information om examinationen ges på kursens webbsida före kursstart. Exempel på examinationsformer som kan förekomma är:
- utvalda uppgifter redovisas muntligt eller skriftligt för lärare under kursens gång,
- frivilliga duggor som kan ge bonuspoäng,
- skriftlig tentamen efter avslutad kurs.
- uppgifter som löses med programvara och redovisas vid dator.
Kursplanen innehåller ändringar
- Ändring gjord på tentamen:
- 2020-09-30: Plussning Inte längre plussning av GRULG
Beslut GRULG, plussning ej tillåten
- 2020-09-30: Plussning Inte längre plussning av GRULG