Kursplan för Konstruktionsberäkningar med finita elementmetoden

Kursplanen innehåller ändringar
Se ändringar

Kursplan fastställd 2019-02-20 av programansvarig (eller motsvarande).

Kursöversikt

  • Engelskt namnFinite element simulations in design
  • KurskodMMS050
  • Omfattning7,5 Högskolepoäng
  • ÄgareMPPDE
  • UtbildningsnivåAvancerad nivå
  • HuvudområdeMaskinteknik, Teknisk design
  • InstitutionMEKANIK OCH MARITIMA VETENSKAPER
  • BetygsskalaTH - Mycket väl godkänd (5), Väl godkänd (4), Godkänd (3), Underkänd

Kurstillfälle 1

  • Undervisningsspråk Engelska
  • Anmälningskod 33111
  • Max antal deltagare48
  • Blockschema
  • Sökbar för utbytesstudenterJa

Poängfördelning

0119 Tentamen 4,5 hp
Betygsskala: TH
4,5 hp
  • 13 Jan 2021 fm J_DATA
  • 07 Apr 2021 fm J_DATA
  • 25 Aug 2021 em J_DATA
0219 Inlämningsuppgift 3 hp
Betygsskala: UG
3 hp

I program

Examinator

Gå till kurshemsidan (Öppnas i ny flik)

Kurstillfälle 2

  • Undervisningsspråk Engelska
  • Anmälningskod 99235
  • Max antal deltagare52
  • Sökbar för utbytesstudenterNej
  • Endast studenter med kurstillfället i programplan.

Poängfördelning

0119 Tentamen 4,5 hp
Betygsskala: TH
4,5 hp
0219 Inlämningsuppgift 3 hp
Betygsskala: UG
3 hp

    Examinator

    Gå till kurshemsidan (Öppnas i ny flik)

    Behörighet

    Grundläggande behörighet för avancerad nivå
    Sökande med en programregistrering på ett program där kursen ingår i programplanen undantas från ovan krav.

    Särskild behörighet

    Engelska 6
    Sökande med en programregistrering på ett program där kursen ingår i programplanen undantas från ovan krav.

    Kursspecifika förkunskaper

    Linjär algebra och flerdimensionell analys.

    Syfte

    Finita elementmetoden (FEM) är en numerisk metod för lösning av partiella differentialekvationer, vilket som möjliggör analys av många ingenjörsproblem. Den här kursen ger de teoretiska grunderna i FEM samt praktiskt träning i att utföra finita elementsimuleringar, för att analysera och dimensionera mekaniska och termiska system.

    Lärandemål (efter fullgjord kurs ska studenten kunna)

    • Sammanfatta vad Finita Elementmetoden (FEM) är och exemplifiera vad den kan användas till.
    • Beskriva den teoretiska grunden till FEM och förklara: stark form, svag form och FE-form.
    • Jämföra FEM med Finita Elementanalys (FEA) och illustrera stegen som de båda innehåller.
    • Identifiera och välj relevanta randvillkor för ett givet problem. 
    • Välja och motivera lämpliga typer av element för en given analys. 
    • Värdera kvalitén för ett givet beräkningsnät. Kan också identifiera och motivera vilka regioner som kräver ett finare beräkningsnät.
    • Förklara väsentliga och naturliga randvillkor, lista också dessa för alla studerade element. Exemplifiera randvillkor av blandad typ.
    • Känn igen de styrande ekvationerna för olika matematiska modeller och förklara deras olika delar. 
    • Utföra en konvergensanalys och evaluera resultatet. 
    • Härleda FE-ekvationerna för linjäriserad buckling och fri-vibrations-analys. 
    • Skapa FE-modeller och utföra: 
      • statisk strukturanalys för att bestämma deformationer, spänningar och töjningar 
      • linjäriserad bucklingsanalys för att uppskatta kritisk knäckningslast och knäckningsmoder.
      • fri-vibrations-analys för att uppskatta egenfrekvenser och modformer.
      • stationär värmeledningsanalys för att bestämma temperatur och värmflöde.
      • sekventiell termomekanisk analys för att bestämma termiska spänningar.
    • Använda FEA för att leda dimensioneringen av en komponent, med avseende, på ett givet kriterium, i en iterativ process.
    • Summera följande elementtyper: stänger, balkar, ramelement, plattor, skal, 2D-solider (skivor) (plan spänning/töjning, axisymmetri) och 3D-solider.
    • Förklara skillnaden mellan linjära och ickelinjära problem och visa hur man löser dessa problem. Lista olika källor som leder till ickelinjära FE-problem.
    • Etablera, lös och evaluera resultat från FEA som innehåller:
      • Kontaktformuleringar (Penalty, Lagrange, Augmented-Lagrange) .
      • Linjära materialmodeller (Hookes lag, Fouriers lag), elasto-plastiska modeller (elastisk-idealplastisk, linjärt hårdnande), fiberarmerade kompositer (transversell isotropi).
    • Förbereda CAD-geometri inför FEA (plocka bort detaljer och reparera geometrin).

    Innehåll

    • Teoretiska grunden till Finita Elementmetoden (FEM). 
    • Träning i att använda kommersiell mjukvara för att sätta ihop och utföra Finita Elementanalyser (FEA). 
    • Vanliga typer av FE-analyser: statisk strukturanalys, stationär värmeledning, linjäriserad buckling, fri-vibrations-analys.
    • Iterativ dimensionering baserad på en eller flera kriterier: styvhet/deformation, tillåten spänning, utmattning, vikt, etcetera.
    • Introduktion till icke-linjära problem.
    • Modelleringsaspekter: val av randvillkor (laster och upplag), förberedelse av CAD-geometri, nätgenerering, val av elementtyp, kontaktformuleringar. 
    • Vanliga materialmodeller för metaller, polymerer och fiberarmerade kompositer.

    Organisation

    Kursen innehåller ungefär 40 h föreläsningar och ungefär 30 h datorövning. Föreläsningarna går igenom teori samt exemplifierar de praktiska aspekterna av FEA. Under datorövningarna arbetar studenterna med inlämningsuppgifter med lärarstöd.

    Kursen förhåller sig till FN:s hållbarhetsmål, framför allt följande:

    • Mål 9: Hållbar Industri, Innovationer och Infrastruktur
    • Mål 11: Hållbara Städer och Samhällen
    • Mål 12: Hållbar Konsumption och Produktion

    Litteratur

    Meddelas närmare kursstart.

    Examination inklusive obligatoriska moment

    Skriftlig tentamen som bestämmer kursbetyget. För att bli godkänd i kursen krävs godkända inlämningsuppgifter.

    Kursplanen innehåller ändringar

    • Ändring gjord på tentamen:
      • 2020-09-30: Plussning Inte längre plussning av GRULG
        Beslut GRULG, plussning ej tillåten