Kursplan för Kraftelektroniska omvandlare

Kursplan fastställd 2022-02-02 av programansvarig (eller motsvarande).

Kursöversikt

  • Engelskt namnPower electronic converters
  • KurskodENM061
  • Omfattning7,5 Högskolepoäng
  • ÄgareMPEPO
  • UtbildningsnivåAvancerad nivå
  • HuvudområdeElektroteknik
  • InstitutionELEKTROTEKNIK
  • BetygsskalaTH - Mycket väl godkänd (5), Väl godkänd (4), Godkänd (3), Underkänd

Kurstillfälle 1

  • Undervisningsspråk Engelska
  • Anmälningskod 21129
  • Max antal deltagare96 (minst 10% av platserna reserveras för utbytesstudenter)
  • Blockschema
  • Sökbar för utbytesstudenterJa

Poängfördelning

0116 Tentamen 6 hp
Betygsskala: TH
6 hp
  • 18 Jan 2025 em J
  • 14 Apr 2025 em J
  • 26 Aug 2025 em J
0216 Laboration 1,5 hp
Betygsskala: UG
1,5 hp

I program

Examinator

Gå till kurshemsidan (Öppnas i ny flik)

Behörighet

Grundläggande behörighet för avancerad nivå
Sökande med en programregistrering på ett program där kursen ingår i programplanen undantas från ovan krav.

Särskild behörighet

Engelska 6
Sökande med en programregistrering på ett program där kursen ingår i programplanen undantas från ovan krav.

Kursspecifika förkunskaper

Kursspecifika förkunskapskrav till MPEPO i Antagningsordningen

Syfte

Målet med kursen är att göra studenterna bekanta med funktionsprinciperna hos de vanligaste topologierna av switchade spänningsomvandlare. Grundläggande design av omvandlare, analys av kurvformer samt beräkning av verkningsgrad är några av de uppgifter som studenterna kan utföra efter att ha fullföljt kursen. Studenterna kommer att utföra både datorsimuleringar med Cadence PSpice såväl som experimentellt arbete på riktiga DC/DC-omvandlare. Innehållet utgör en grund för fortsättningskursen 'Power Electronic Devices and Applications'. Kursen är även lämplig för ingenjörsarbete inom många olika områden såsom design av strömförsörjningar, elektriska drivsystem samt elnätsapplikationer.

Lärandemål (efter fullgjord kurs ska studenten kunna)

  • Kunna sätta in kraftelektroniska grundkunskaper, komponenter och dess egenskap i fungerande applikationer.
  • Beräkna Fourier-komponenter och THD för grundläggande spännings- och strömkurvformer.
  • Beskriva funktionsprincipen för de vanligast förekommande aktiva komponenterna (t.ex. dioder, tyristorer, IGBTer och MOSFETar) och passiva komponenterna (t.ex. kondensatorer, transformatorer och induktorer).
  • Förklara och ge exempel på hur Pulse Width Modulation (PWM) fungerar. Identifiera behovet av en kontrollerkrets i en switchad omvandlare, beskriva dess syfte samt förstå hur den önskade storheten kan kontrolleras.
  • Utföra analytiska beräkningar på ideala DC/DC-omvandlare såsom buck, boost, buck-boost, flyback och forwardomvandlare. Funktionsprincipen för de olika topologierna skall urskiljas och noggrant granskas i både kontinuerlig och diskontinuerlig drift genom analys av ström och spänningskurvformer. Förutom de ovan nämnda topologierna skall även andra topologier (t.ex. push-pull, halvbrygga och fullbrygga) samt kretsförbättringar (t.ex. parallellkopplade omvandlare) kunna identifieras och exemplifieras.
  • Utföra analytiska beräkningar samt förstå funktionsprincipen för både 1-fas och 3-fas DC/AC omriktare. Olika moduleringsstrategier (t.ex. PWM och square-wave) implementeras och de resulterande kurvformerna utvärderas och jämförs.
  • Förklara funktionsprincipen för flernivåomriktare (t.ex. 3-nivå och 5-nivå NPC- och MMC-omriktare) genom analys av spännings- och strömkurvformer samt applicera för- och nackdelar på t.ex. övertoner och förluster.
  • Förklara funktionsprincipen samt utföra analytiska beräkningar på 1-fas och 3-fas diodbryggor i både diskontinuerlig drift med spänningsstyv DC-sida samt i kontinuerlig drift med strömstyv DC-sida. Kombinera nätimpedansen med diodbryggan och illustrera dess påverkan i kretsen.
  • Förklara funktionsprincipen samt utföra analytiska beräkningar på 1-fas och 3-fas tyristorbryggor i kontinuerlig drift med strömstyv DC-sida. Kombinera nätimpedansen med tyristorbryggan och illustrera dess påverkan i kretsen. Analysera mer avancerade topologier (t.ex. 12-puls koppling) av tyristorbryggor samt särskilja deras för- respektive nackdelar.
  • Identifiera och tolka enkla scheman över olika omvandlare. Urskilja olika komponenter i en fysisk krets samt utföra grundläggande mätningar av kurvformer och beräkning av verkningsgrad.
  • Utföra en småsignal-modellering av en nedspänningshackare med syftet att demonstrerar hur en tillhörande analog eller digital styrning kan utformas.
  • Beräkna förluster i både passiva och aktiva komponenter. Den resulterande komponenttemperaturen i de aktiva komponenterna utvärderas och en lämplig kylfläns dimensioneras. Ha en grundläggande förståelse för hur livslängden hos en komponent kan uppskattas.
  • Implementera och testa olika kraftelektroniska kretsar, innehållandes diskreta element. Vidare, använda Spice-baserade datorprogram samt genomföra praktiska laborationer för att kunna beskriva hur dc/dc-omriktare fungerar. Övningarna syftar till att de grundläggande driftprinciperna skall kunna beskrivas, vågformer analyseras via t.ex fft, samt att parametervariationsstudier kan utföras.

Innehåll

Föreläsningar och räkneövningar:
  • Bakgrund: elektriska och matematiska förkunskaper, spänningar och strömmar för passiva komponenter, medelvärde och RMS-värde, Fourieranalys av periodiska kurvformer.
  • Aktiva och passiva komponenter: dioder, tyristorer, MOSFETar, GTOer, IGBTer, induktorer, transformatorer och kondensatorer.
  • Icke-isolerade DC/DC-omvandlare: buck, boost, buck-boost samt H-brygga.
  • Isolerade DC/DC-omvandlare: flyback, forward, halvbrygga, push-pull samt fullbrygga.
  • DC/AC-omvandlare: generering av 1-fas och 3-fas växelspänningar, moduleringssätt (såsom square-wave och PWM), flernivåomvandlare.
  • Diodbryggor: 1-fas och 3-fas diodbryggor med både kontinuerlig och diskontinuerlig DC-ström.
  • Tyristorbryggor: 1-fas och 3-fas tyristorbryggor med varierande DC-sid belastning.
  • Omvandlare förbättringar: dynamisk modellering, controller design och förbättrade konfigurationer.
  • Temperaturfördelning och livslängd: beräkning av förluster, termiska beräkningar, dimensionering av kylflänsar samt uppskattning av komponenters livslängd.

Praktiska laborationer (obligatoriska):
  • Buck-omvandlare
  • Flyback-omvandlare

PSpice-uppgifter (obligatoriska):
  • 7st PSpice datorlabbar som behandlar de flesta omvandlartyperna i kursen.

Organisation

Kursen består ungefärligen av:

  • 18 föreläsningar (2 x 45min)
  • 13 räkneövningar (2 x 45min)
  • 2 praktiska laborationer (4h)
  • 7 datorlaborationer med PSpice (2h)

Litteratur

Mohan, Undeland, Robbins.
Power Electronics Converters, Applications and Design.
Wiley 2003, 3rd ed.

Examination inklusive obligatoriska moment

Skriftlig tentamen med betyg U, 3, 4 eller 5.
Godkända projektuppgifter

Kursens examinator får examinera enstaka studenter på annat sätt än vad som anges ovan om särskilda skäl föreligger, till exempel om en student har ett beslut från Chalmers om pedagogiskt stöd på grund av funktionsnedsättning.