Course syllabus for Digital signal processing for audio engineering and active sound and vibration control

Course syllabus adopted 2021-02-26 by Head of Programme (or corresponding).

Overview

  • Swedish nameDigital signalbehandling för audioteknik och aktiv kontroll av ljud och vibrationer
  • CodeVTA132
  • Credits7.5 Credits
  • OwnerMPSOV
  • Education cycleSecond-cycle
  • Main field of studyElectrical Engineering, Mechanical Engineering, Civil and Environmental Engineering, Engineering Physics
  • DepartmentARCHITECTURE AND CIVIL ENGINEERING
  • GradingTH - Pass with distinction (5), Pass with credit (4), Pass (3), Fail

Course round 1

  • Teaching language English
  • Application code 38119
  • Maximum participants27
  • Open for exchange studentsYes

Credit distribution

0119 Written and oral assignments 3.5 c
Grading: TH
2 c1.5 c
0219 Laboratory 4 c
Grading: TH
3 c1 c

In programmes

Examiner

Go to coursepage (Opens in new tab)

Eligibility

General entry requirements for Master's level (second cycle)
Applicants enrolled in a programme at Chalmers where the course is included in the study programme are exempted from fulfilling the requirements above.

Specific entry requirements

English 6 (or by other approved means with the equivalent proficiency level)
Applicants enrolled in a programme at Chalmers where the course is included in the study programme are exempted from fulfilling the requirements above.

Course specific prerequisites

Basic course in acoustics (e.g. Introduction to audio technology and acoustics)

Aim

The course teaches fundamental methods in digital signal processing applicable in audio engineering and active noise and vibration. Audio signal processing is applied in both time and frequency domain and is ubiquitous in modern communication systems. The course also gives insight into various approaches for active control, the physics behind these approaches and their implementation.

Learning outcomes (after completion of the course the student should be able to)

  • Understand, explain, and implement the most common digital audio signal processing methods
  • Understand, explain and apply the physics behind typical active noise control solutions for air-borne sound and structure borne sound
  • Understand, explain and apply the signal processing theory required for the application of active noise control solutions
  • Design, implement and evaluate digital filters
  • Define performance requirements for an active noise and vibration control system
  • Formulate and solve the problem of noise control by means of active control
  • Model and simulate active control systems
  • Design, implement an active control system for a real life problem
  • Evaluate the active control system virtually and experimentally
  • Carry out the different steps of the work inside a team with distributed tasks
  • Communicate results to colleagues and teachers in appropriate form

Content

The course includes:
  • Fundamentals of signal processing: Dynamic range control, delays, digital filters
  • Fundamentals of system analysis: Frequency analysis, linear systems, impulse response and frequency response functions
  • One-dimensional sound fields: One-dimensional sound fields (plane waves in ducts) with a primary and a secondary source
  • Principles of feedforward systems
  • Various control algorithms (cancellation of the sound pressure, minimization of radiated power, maximization of absorbed power etc), fixed and adaptive controllers
  • Feedback system, local control of a sound field, stability criteria.
  • Three-dimensional sound fields: Active control of free-field radiation, control of monopole radiation and of radiation from extended sources, the Kirchhoff-Helmholtz integral equation, global control of sound fields in enclosures
  • Local control of sound fields in enclosures
  • Vibration isolation and control

Organisation

The course comprises the following learning activities: lectures, exercises and experimental work.

Literature

Nelson, P. A., Elliot, S. J., "Active Control of Sound", Academic Press (1992) and material provided by the Division of Applied Acoustic under "course materials" at www.ta.chalmers.se.

Examination including compulsory elements

Examination and grading are based on home assignments and written reports on project works. Approval of laboratory work is required.

The course examiner may assess individual students in other ways than what is stated above if there are special reasons for doing so, for example if a student has a decision from Chalmers on educational support due to disability.