The course syllabus contains changes
See changesCourse syllabus adopted 2021-02-26 by Head of Programme (or corresponding).
Overview
- Swedish nameMatematisk fördjupning
- CodeTMA227
- Credits6 Credits
- OwnerTKKEF
- Education cycleFirst-cycle
- Main field of studyMathematics
- DepartmentMATHEMATICAL SCIENCES
- GradingTH - Pass with distinction (5), Pass with credit (4), Pass (3), Fail
Course round 1
- Teaching language Swedish
- Application code 54118
- Maximum participants50
- Open for exchange studentsNo
- Only students with the course round in the programme overview.
Credit distribution
Module | Sp1 | Sp2 | Sp3 | Sp4 | Summer | Not Sp | Examination dates |
---|---|---|---|---|---|---|---|
0119 Examination 6 c Grading: TH | 6 c |
|
In programmes
Examiner
- Tony Johansson
- Part-time fixed-term teacher, Analysis and Probability Theory, Mathematical Sciences
Eligibility
General entry requirements for bachelor's level (first cycle)Applicants enrolled in a programme at Chalmers where the course is included in the study programme are exempted from fulfilling the requirements above.
Specific entry requirements
The same as for the programme that owns the course.Applicants enrolled in a programme at Chalmers where the course is included in the study programme are exempted from fulfilling the requirements above.
Course specific prerequisites
- Analysis and linear algebra:
- Calculus (one and several variables)
- Ordinary differential equations
- Systems of linear equations
- Matrix algebra and determinants
- Linear Euclidean spaces and eigenvalues
- The least squares method
Aim
This course will provide a deeper knowledge of mathematics in such a way that further studies within the Kf program is facilitated. Special care is taken to provide the knowledge needed for more advanced courses in mathematics and physics.Learning outcomes (after completion of the course the student should be able to)
- formulate, and explain the meaning of, relevant concepts, definitions and theorems
- prove some relevant fundamental theorems
- independently construct simple mathematical arguments and proofs
- master important concepts in linear algebra and for example be able to treat a function as a vector in a vector space
- analyze the convergence of sequences and solve linear difference equations
- determine convergence, absolute or conditional, of a series using appropriate convergence criteria
- determine if a function series is uniformly convergent
- determine the convergence region of a power series
- apply results concerning the interchanging of limits, and term-wise integration and differentiation
- determine the Fourier series of a periodic function
Content
General vector spaces and subspaces, the concepts linearly independent vectors, basis and dimension. Linear transformations. The dimension theorem. Orthogonality and inner product spaces. The Cauchy-Schwarz inequality. Orthogonal projection in general vector spaces with applications to function spaces and Fourier series. Sequences and difference equations, series, sequences and series of functions. Convergence criteria. Uniform convergence of sequences and series. Interchange of limit procedures. Weierstrass majorant test. Applications to power series and Fourier series.Organisation
The teaching is organized in the form of lectures and tutorials. Bonus points may be employed. Some material is not covered in the lectures, but left for self-study. This material is, however, just as much part of the course. The tutorials play an important role throughout the course in the integration of the entire course content, from theory to practice.Literature
The course literature is specified on the course web page before the course starts.Examination including compulsory elements
Written exam at the end of the course. During the course, there may be assignments for bonus points to the written exam, e.g. in the form of quizzes or written and/or oral presentation of problem-solving assignments. More detailed information about the examination and information regarding any bonus assignments for each course instance is provided on the course web page before the start of the course.The course examiner may assess individual students in other ways than what is stated above if there are special reasons for doing so, for example if a student has a decision from Chalmers on educational support due to disability.
The course syllabus contains changes
- Changes to examination:
- 2021-09-21: Grade raising Changed to grade raising by GRULG
- 2021-09-21: Grade raising Changed to grade raising by GRULG
- Changes to course rounds:
- 2022-02-09: Examinator Examinator changed from Stefan Lemurell (sj) to Tony Johansson (tonyj) by Viceprefekt
[Course round 1]
- 2022-02-09: Examinator Examinator changed from Stefan Lemurell (sj) to Tony Johansson (tonyj) by Viceprefekt