The course syllabus contains changes
See changesCourse syllabus adopted 2019-02-14 by Head of Programme (or corresponding).
Overview
- Swedish nameDjup maskininlärning
- CodeSSY340
- Credits7.5 Credits
- OwnerMPSYS
- Education cycleSecond-cycle
- Main field of studyAutomation and Mechatronics Engineering, Computer Science and Engineering, Electrical Engineering, Software Engineering, Biomedical engineering
- DepartmentELECTRICAL ENGINEERING
- GradingTH - Pass with distinction (5), Pass with credit (4), Pass (3), Fail
Course round 1
- Teaching language English
- Application code 35124
- Maximum participants170
- Block schedule
- Open for exchange studentsNo
Credit distribution
Module | Sp1 | Sp2 | Sp3 | Sp4 | Summer | Not Sp | Examination dates |
---|---|---|---|---|---|---|---|
0117 Project 3 c Grading: TH | 3 c | ||||||
0217 Written and oral assignments 4.5 c Grading: TH | 4.5 c |
In programmes
- MPALG - COMPUTER SCIENCE - ALGORITHMS, LANGUAGES AND LOGIC, MSC PROGR, Year 2 (elective)
- MPCAS - COMPLEX ADAPTIVE SYSTEMS, MSC PROGR, Year 2 (elective)
- MPCSN - COMPUTER SYSTEMS AND NETWORKS, MSC PROGR, Year 2 (elective)
- MPSYS - SYSTEMS, CONTROL AND MECHATRONICS, MSC PROGR, Year 2 (elective)
Examiner
- Lennart Svensson
- Full Professor, Signal Processing and Biomedical Engineering, Electrical Engineering
Eligibility
General entry requirements for Master's level (second cycle)Applicants enrolled in a programme at Chalmers where the course is included in the study programme are exempted from fulfilling the requirements above.
Specific entry requirements
English 6 (or by other approved means with the equivalent proficiency level)Applicants enrolled in a programme at Chalmers where the course is included in the study programme are exempted from fulfilling the requirements above.
Course specific prerequisites
Students should have working knowledge of basic probability, linear algebra and programming. It is desirable to have basic knowledge in statistics and learning, corresponding to, e.g., ESS101 - Modelling and simulation, SSY230 - System identification or TDA231 - Algorithms for machine learning and inference, but it is not a strict requirement.
Aim
The purpose with this course is to give a thorough introduction to deep machine learning, also known as deep learning or deep neural networks. Over the last few years, deep machine learning has dramatically changed the state of the art performance in various fields including speech-recognition, computer vision and reinforcement learning (used, e.g., to learn how to play Go). We focus primarily on basic principles regarding how these networks are constructed and trained, but we also cover many of the key techniques used in different applications. The overall objective is to provide a solid understanding of how and why deep machine learning is useful, as well as the skills to apply them to solve problems of practical importance.
Learning outcomes (after completion of the course the student should be able to)
After the course, students should be able to:- explain the fundamental principles of supervised (and unsupervised) learning, including basic techniques like cross-validation to avoid overfitting
- describe the standard cost functions optimised during supervised training (in particular the cross entropy) and the standard solution techniques (stochastic gradient descent, back propagation, etc.)
- explain how traditional feed-forward networks are constructed and why they can approximate "almost" any function (the universality theorem)
- understand the problem with vanishing gradients and modern tools to mitigate it (e.g., batch normalisation and residual networks)
- summarise the key components in convolutional neural networks (CNNs) and their key advantages
- describe common types of recurrent neural networks (RNN) and their applications
- provide an overview of some of the many modern variations of the deep learning networks
- argue for the benefits of generative models, transfer learning and data augmentation in situations when we have a limited amount of annotated/labelled data
- explain what a Markov decision problem and reinforcement learning (RL) are
- make use of deep learning to solve RL using, e.g., deep q-learning
- train and apply CNNs to image applications and RNNs to applications related to time sequences such as those involved in R
- use a suitable deep learning library (e.g., TensorFlow or Torch) to solve a variety of practical applications
Content
- supervised learning by cross-entropy minimisation and cross-validation
- back propagation and stochastic gradient descent
- a suitable programming language for implementing deep learning algorithm
- feedforward neural networks and convolutional neural networks
- recurrent neural networks and long short-term memory networks
- techniques for efficient training such as momentum and batch normalisation
- modern variations of neural networks (e.g., attention and residual networks)
- transfer learning and data augmentation
- reinforcement learning, Markov decision problems, q-learning and deep q-learning
- application of convolutional neural networks on image recognition and reinforcement learning
Organisation
The course comprises on-line lectures (to watch before the class), active learning sessions (where we review material from the corresponding lecture), home assignments, a project and tutorial sessions (primarily related to the home assignments).
Literature
We mainly use
Ian Goodfellow, Yoshua Bengio and Aaron Courville, Deep Learning, MIT Press, 2016,
which is available online http://www.deeplearningbook.org.
Examination including compulsory elements
There is no written exam in this course. Instead the students are evaluated individually based on their performance in the different activities in the course; more specifically, the grade is obtained by weighting the results on hand-ins, project and the degree of attendance.
The course syllabus contains changes
- Changes to course rounds:
- 2020-06-25: Max number of participants Max number of participants changed from 140 to 170 by PA
[Course round 1]
- 2020-06-25: Max number of participants Max number of participants changed from 140 to 170 by PA