Course syllabus adopted 2025-02-18 by Head of Programme (or corresponding).
Overview
- Swedish nameGalaxer och observationell kosmologi
- CodeRRY091
- Credits7.5 Credits
- OwnerMPPHS
- Education cycleSecond-cycle
- Main field of studyElectrical Engineering, Engineering Physics
- DepartmentSPACE, EARTH AND ENVIRONMENT
- GradingTH - Pass with distinction (5), Pass with credit (4), Pass (3), Fail
Course round 1
- Teaching language English
- Application code 85113
- Open for exchange studentsYes
Credit distribution
Module | Sp1 | Sp2 | Sp3 | Sp4 | Summer | Not Sp | Examination dates |
---|---|---|---|---|---|---|---|
0111 Examination 7.5 c Grading: TH | 7.5 c |
In programmes
Examiner
- Cathy Horellou
- Professor, Astronomy and Plasma Physics, Space, Earth and Environment
Eligibility
General entry requirements for Master's level (second cycle)Applicants enrolled in a programme at Chalmers where the course is included in the study programme are exempted from fulfilling the requirements above.
Specific entry requirements
English 6 (or by other approved means with the equivalent proficiency level)Applicants enrolled in a programme at Chalmers where the course is included in the study programme are exempted from fulfilling the requirements above.
Course specific prerequisites
Basic physics, especially mechanics.
Aim
The aim of the course is to provide a comprehensive review of extragalactic astronomy and cosmology, with special emphasis on recent observational discoveries. The properties of different types of galaxies will be discussed and compared in a cosmological context. The students will gain an understanding of the galaxies that populate our universe and learn about the current cosmological model which include dark matter and dark energy. The dark energy is a component with negative pressure held responsible for the observed acceleration of the cosmic expansion. Understanding the nature of dark matter and dark energy is one of the greatest challenges of modern cosmology.
Learning outcomes (after completion of the course the student should be able to)
- describe the various components (stars, gas, dust, dark matter) of a galaxy, their characteristics, and how they are observed
- explain the relationship between density and potential in a galaxy
- calculate a rotation curve from a given gravitational potential, calculate the epicycle frequency, draw a Lindblad diagram and define the Lindblad resonances
- interpret observed galactic velocity fields
- define galaxy groups and clusters, and discuss the role of interactions for galaxy evolution
- describe observed features of active galactic nuclei and models for how they can be explained
- explain the dynamics of the Friedmann model
- describe the characteristics of the cosmic microwave background and explain the physical mechanisms causing the blackbody shape and the anisotropies
- review key observations on which the concordance model is based
- critically read, understand, summarize and present a scientific article on the subject
Content
- Hubble's classification of galaxies
- The Milky Way galaxy
- Properties of disk and elliptical galaxies
- Galactic structure and dynamics, including spiral structure
- Active galactic nuclei (Seyfert, radio galaxies, quasars...)
- Interacting and merging galaxies
- Groups and clusters of galaxies
- Galaxy evolution; high-redshift galaxies
- The Friedmann-Lemaître-Robertson-Walker model of the Universe
- Dark matter and dark energy
- Nucleosynthesis
- The cosmic microwave background
- Structure formation
- The intergalactic medium
- Cosmological observations
- Simulations of galaxies and cosmology
Organisation
Lectures and exercises.Literature
- Lecture notes and other hand-outs.
- Parts of the following books (both books are available as e-books from the Chalmers library):
- "Extragalactic Astronomy and Cosmology. An Introduction", by Peter Schneider, 2015, Springer Verlag;
- "Galaxies in the Universe, An Introduction", by L.S. Sparke and J.S. Gallagher, Cambridge University Press, 2007 edition.
Examination including compulsory elements
The course examiner may assess individual students in other ways than what is stated above if there are special reasons for doing so, for example if a student has a decision from Chalmers about disability study support.