Course syllabus for Galaxies and observational cosmology

Course syllabus adopted 2022-02-02 by Head of Programme (or corresponding).

Overview

  • Swedish nameGalaxer och observationell kosmologi
  • CodeRRY091
  • Credits7.5 Credits
  • OwnerMPPHS
  • Education cycleSecond-cycle
  • Main field of studyElectrical Engineering, Engineering Physics
  • DepartmentSPACE, EARTH AND ENVIRONMENT
  • GradingTH - Pass with distinction (5), Pass with credit (4), Pass (3), Fail

Course round 1

  • Teaching language English
  • Application code 85147
  • Block schedule
  • Open for exchange studentsYes

Credit distribution

0111 Examination 7.5 c
Grading: TH
7.5 c0 c0 c0 c0 c0 c
  • 28 Okt 2024 am J
  • 07 Jan 2025 am J
  • 27 Aug 2025 pm J

In programmes

Examiner

Go to coursepage (Opens in new tab)

Eligibility

General entry requirements for Master's level (second cycle)
Applicants enrolled in a programme at Chalmers where the course is included in the study programme are exempted from fulfilling the requirements above.

Specific entry requirements

English 6 (or by other approved means with the equivalent proficiency level)
Applicants enrolled in a programme at Chalmers where the course is included in the study programme are exempted from fulfilling the requirements above.

Course specific prerequisites

Basic physics, especially mechanics.

Aim

The aim of the course is to provide a comprehensive review of extragalactic astronomy and cosmology, with special emphasis on recent observational discoveries. The properties of different types of galaxies will be discussed and compared in a cosmological context. The students will gain an understanding of the galaxies that populate our universe and learn about the current cosmological model which include dark matter and dark energy. The dark energy is a component with negative pressure held responsible for the observed acceleration of the cosmic expansion. Understanding the nature of dark matter and dark energy is one of the greatest challenges of modern cosmology.

Learning outcomes (after completion of the course the student should be able to)

  • give time and length scales relevant for galaxies and cosmology
  • describe in some detail the Hubble classification of galaxies
  • describe the various components (stars, gas, dust, dark matter) of a galaxy, their characteristics, and how they are observed
  • explain the relationship between density and potential in a galaxy
  • use the virial theorem
  • discuss the role of encounters between stars for stellar orbits
  • calculate a rotation curve from a given gravitational potential, calculate the epicycle frequency, draw a Lindblad diagram and define the Lindblad resonances
  • discuss theories for spiral structure
  • describe stellar orbits in elliptical galaxies and how they are related to the shape of the galaxy
  • interpret observed galactic velocity fields
  • define galaxy groups and clusters, and discuss the role of interactions for galaxy evolution
  • describe observed features of active galactic nuclei and models for how they can be explained
  • explain the dynamics of the Friedmann model and be able to calculate the age of the Universe at a certain redshift
  • describe the characteristics of the cosmic microwave background and explain the physical mechanisms causing the blackbody shape and the anisotropies
  • explain the linear model for growth of perturbations and the top-hat spherical model
  • review key observations on which the concordance model is based
  • give a personal opinion about the current state of cosmology and be able to express it with arguments that take into account the recent observational evidence
  • critically read, understand, summarize and present a scientific article on the subject

Content

  • Hubble's classification of galaxies
  • The Milky Way galaxy
  • Properties of disk and elliptical galaxies
  • Galactic structure and dynamics, including spiral structure
  • Active galactic nuclei (Seyfert, radio galaxies, quasars...)
  • Interacting and merging galaxies
  • Groups and clusters of galaxies
  • Galaxy evolution; high-redshift galaxies
  • The Friedmann-Lemaître-Robertson-Walker model of the Universe
  • Dark matter and dark energy
  • Nucleosynthesis
  • The cosmic microwave background
  • Structure formation
  • The intergalactic medium
  • Cosmological observations
  • Simulations of galaxies and cosmology

Organisation

Lectures and exercises.

Literature

  • Lecture notes and other hand-outs.
  • Parts of the following books (both books are available as e-books from the Chalmers library): 
    • "Extragalactic Astronomy and Cosmology. An Introduction", by Peter Schneider, 2015, Springer Verlag;
    •  "Galaxies in the Universe, An Introduction", by L.S. Sparke and J.S. Gallagher, Cambridge University Press, 2007 edition.

Examination including compulsory elements

- Part 1: Oral presentation of a relevant scientific article and corresponding document (for instance PDF of presentation, or other written summary). 
The oral presentation and accompanied file are compulsory and give bonus points (up to 10% of the maximum amount of points in Part 2).
- Part 2: Written home exam with essay questions and calculations, followed by an oral. 

The course examiner may assess individual students in other ways than what is stated above if there are special reasons for doing so, for example if a student has a decision from Chalmers on educational support due to disability.