The course syllabus contains changes
See changesCourse syllabus adopted 2020-02-06 by Head of Programme (or corresponding).
Overview
- Swedish nameLinjära statistiska modeller
- CodeMVE190
- Credits7.5 Credits
- OwnerMPENM
- Education cycleSecond-cycle
- Main field of studyMathematics
- DepartmentMATHEMATICAL SCIENCES
- GradingTH - Pass with distinction (5), Pass with credit (4), Pass (3), Fail
Course round 1
- Teaching language English
- Application code 20139
- Maximum participants100
- Open for exchange studentsYes
Credit distribution
Module | Sp1 | Sp2 | Sp3 | Sp4 | Summer | Not Sp | Examination dates |
---|---|---|---|---|---|---|---|
0108 Examination 7.5 c Grading: TH | 7.5 c |
|
In programmes
- MPDSC - DATA SCIENCE AND AI, MSC PROGR, Year 1 (elective)
- MPDSC - DATA SCIENCE AND AI, MSC PROGR, Year 2 (elective)
- MPENM - ENGINEERING MATHEMATICS AND COMPUTATIONAL SCIENCE, MSC PROGR, Year 1 (compulsory elective)
- MPENM - ENGINEERING MATHEMATICS AND COMPUTATIONAL SCIENCE, MSC PROGR, Year 2 (elective)
Examiner
- Umberto Picchini
- Senior Lecturer, Applied Mathematics and Statistics, Mathematical Sciences
Course round 2
- Teaching language English
- Application code 99222
- Maximum participants10
- Open for exchange studentsNo
- Only students with the course round in the programme overview.
Credit distribution
Module | Sp1 | Sp2 | Sp3 | Sp4 | Summer | Not Sp | Examination dates |
---|---|---|---|---|---|---|---|
0108 Examination 7.5 c Grading: TH | 7.5 c |
Examiner
- Umberto Picchini
- Senior Lecturer, Applied Mathematics and Statistics, Mathematical Sciences
Eligibility
General entry requirements for Master's level (second cycle)Applicants enrolled in a programme at Chalmers where the course is included in the study programme are exempted from fulfilling the requirements above.
Specific entry requirements
English 6 (or by other approved means with the equivalent proficiency level)Applicants enrolled in a programme at Chalmers where the course is included in the study programme are exempted from fulfilling the requirements above.
Course specific prerequisites
MVE155 Statistical inference or a similar course
Aim
Understand the common mathematical structure of linear regression models and generalised linear models; construct and use these models for data analysis using statistical inference and suitable software; interpret the results and criticise the model limitations.
Learning outcomes (after completion of the course the student should be able to)
- explain the common mathematical structure of linear regression models and generalized linear models
- construct and use these models for data analysis using statistical inference and suitable software
- interpret the results and criticize the model limitations
- identify data analysis situations for which linear models apply naturally and to estimate and interpret parameters
- predict future observations and test hypotheses using suitable software such as R
- construct regression models that are suitable for the current data but can also generalize to future observations
- explain the model limitations, identify situations where the hypothesized model is not suitable for the given data, and possibly transform the data to increase the model predictive ability
Content
- simple linear and multivariate linear models and underlying assumptions
- the bias/variance trade-of
- properties of least squares estimators
- identification of outliers and the use of residuals and other diagnostics to verify if model assumptions are met;
- the use of categorical covariates in regression.
- testing parameters using the t-test;
- goodness of fit indices (R2 and adjusted R2).
- confidence and prediction intervals.
- the multicollinearity problem, its identification and remedial measures.
- Model selection via greedy algorithms (stepwise procedures) and the AIC.
- Model selection via the partial F test;
- Prediction error and cross validation.
- Interaction between covariates.
- an introduction to generalised linear models, the exponential family, and asymptotic properties of the maximum likelihood estimators.
- testing procedures for generalised linear models.
Organisation
Lectures; weekly (or almost weekly) mini-projects and presentationsLiterature
Updated on a yearly basis - please check course homepageExamination including compulsory elements
Summary report of the weekly mini-projects; a final project report; a written exam. Attendance to the weekly presentations of mini-analyses is mandatory. See the course page for how to compensate for missed attendance.The course syllabus contains changes
- Changes to examination:
- 2021-04-14: Exam date Exam date changed by Elisabeth Eriksson
[32892, 53872, 3], New exam for academic_year 2020/2021, ordinal 3 (not discontinued course) - 2021-01-27: Examination datetime Examination datetime changed from 2021-04-08 Afternoon to 2021-04-08 Afternoon by E Eriksson
[2021-04-08 7,5 hec, 0108] - 2021-01-27: Exam date Exam date changed by E Eriksson
[32892, 53872, 2], New exam for academic_year 2020/2021, ordinal 2 (not discontinued course) - 2020-09-30: Grade raising No longer grade raising by GRULG
- 2021-04-14: Exam date Exam date changed by Elisabeth Eriksson