Course syllabus for Surface engineering

Course syllabus adopted 2023-02-14 by Head of Programme (or corresponding).

Overview

  • Swedish nameYtteknologi
  • CodeKPO041
  • Credits7.5 Credits
  • OwnerMPMCN
  • Education cycleSecond-cycle
  • Main field of studyChemical Engineering
  • DepartmentCHEMISTRY AND CHEMICAL ENGINEERING
  • GradingTH - Pass with distinction (5), Pass with credit (4), Pass (3), Fail

Course round 1

  • Teaching language English
  • Application code 30115
  • Maximum participants36 (at least 10% of the seats are reserved for exchange students)
  • Minimum participants12
  • Block schedule
  • Open for exchange studentsYes

Credit distribution

0119 Examination 4.5 c
Grading: TH
0 c0 c4.5 c0 c0 c0 c
  • 16 Mar 2024 am J
  • 05 Jun 2024 am J
  • 28 Aug 2024 pm J
0219 Project 3 c
Grading: UG
0 c0 c3 c0 c0 c0 c

In programmes

Examiner

Go to coursepage (Opens in new tab)

Eligibility

General entry requirements for Master's level (second cycle)
Applicants enrolled in a programme at Chalmers where the course is included in the study programme are exempted from fulfilling the requirements above.

Specific entry requirements

English 6 (or by other approved means with the equivalent proficiency level)
Applicants enrolled in a programme at Chalmers where the course is included in the study programme are exempted from fulfilling the requirements above.

Course specific prerequisites

Prior knowledge of chemical engineering and physical chemistry including surface and colloid chemistry is recommended.

Aim

This course focuses on understanding, analyzing and controlling the properties of solid surfaces and provides knowledge about modification techniques for altering surface properties. The science and technology of surfaces and interfaces are playing increasingly important role, for instance in the polymer and pulp/paper industry. The material surface can be modified by various techniques in order to control surface properties and to give chemical functionality or responsiveness. Applications are also found in biology and medicine (biointerface science).

The course is to a high extent built on problem-based learning. Each student will select a project which aims to modify surface properties or to chemically functionalize a surface. The projects do not have any expected outcomes and are part of real ongoing research activities at Chalmers. In this manner, students create value for others, i.e. the researchers in the field (not necessarily only those at Chalmers). Students together in a project group will under supervision of a project leader select a strategy for surface modifications, perform surface modifications and then analyze with suitable techniques the effect of the surface modifications. The project ends with an oral presentation and a written report.

Learning outcomes (after completion of the course the student should be able to)

After completion of the course, the student should be able to:

- describe the origin of surface properties and surface forces
- describe dynamics of polymer surfaces and its consequences on surface phenomena
- use methods for analyzing surface adsorption
- select suitable analytical techniques to characterize the chemical composition of a surface
- plan and perform some surface modifications
- understand the effect of surface chemistry and surface morphology on wetting properties
- understand how plasma treatments are performed
- understand the basic theory of liquid-liquid phase separation
- understand basic aspects of adhesion and apply them in the field of coatings, adhesives and composites
- make repelling coatings
- understand interactions involving proteins, polymers and solid surfaces
- suggest surface treatments to improve biocompatibility

The student will also develop generic skills and get experience on:

- collaborating in a group towards a common goal
- dealing with uncertainty and unexpected outcomes
- searching for information relevant for the task at hand

Content

The course is based on lectures. Some but not all material is covered by literature. In addition, the project work relates to topics that have been introduced in the lectures but it also offers deepened knowledge on a topic. The main topics are:

- introduction to surface forces
- polymers on surfaces
- surface force apparatus
- surface sensitive techniques
- chemical/spectroscopic analysis with XPS, SIMS, FTIR or Raman
- wetting and contact angle, phenomena and measurements
- chemical modifications and patterning
- kinetics of molecular binding to surfaces
- plasma treatment
- modifications of cellulose fibers
- adhesion
- biocompatibility and blood-surface interactions
- examples of applications of chemically modified surfaces

Organisation

The course contains approximately 10 two-hour lectures and 40 hours project work.

Literature

Lecture slides (the main material)

Chapters from:

Polymer Surfaces, From Physics to Technology, F. Garbassi, M. Morra, E. Occhiello, Wiley, New York, ISBN 0471971006

Soft Condensed Matter, R.A.L. Jones, Oxford master series in condensed matter physics 2002, ISBN 0198505906

Plasmonic Biosensors, A.B. Dahlin, Advances in Biomedical Spectroscopy, IOS Press 2012, ISBN 9781607509653

Intermolecular and Surface Forces, J.N. Israelachvili, Academic Press 2011, ISBN 9780123751829

Piezoelectric Sensors, C. Steinem, A. Janshoff, Springer 2007, ISBN 9783540365686

Surface Wetting, K.Y. Law, H. Zhao, Springer 2016, ISBN 9783319252124

Applied Plastics Engineering Handbook, M. Kutz, Elsevier 2016, ISBN 9780323390408

Review articles from the scientific literature may be added

Examination including compulsory elements

The examination can be written or oral with grades Fail, 3, 4 or 5. The project work is reported separately (3 credits) with grades pass or fail.

The course examiner may assess individual students in other ways than what is stated above if there are special reasons for doing so, for example if a student has a decision from Chalmers on educational support due to disability.