Course syllabus adopted 2020-02-19 by Head of Programme (or corresponding).
Overview
- Swedish nameByggnadsfysik och byggnadsakustik, civilingenjör
- CodeBOM365
- Credits7.5 Credits
- OwnerTKSAM
- Education cycleFirst-cycle
- Main field of studyCivil and Environmental Engineering
- DepartmentARCHITECTURE AND CIVIL ENGINEERING
- GradingTH - Pass with distinction (5), Pass with credit (4), Pass (3), Fail
Course round 1
- Teaching language Swedish
- Application code 58131
- Block schedule
- Open for exchange studentsNo
- Only students with the course round in the programme overview.
Credit distribution
Module | Sp1 | Sp2 | Sp3 | Sp4 | Summer | Not Sp | Examination dates |
---|---|---|---|---|---|---|---|
0117 Examination 3.5 c Grading: TH | 3.5 c |
| |||||
0217 Project, part A 2 c Grading: UG | 2 c | ||||||
0317 Project, part B 2 c Grading: UG | 2 c |
In programmes
Examiner
- Angela Sasic Kalagasidis
- Full Professor, Building Technology, Architecture and Civil Engineering
Course round 2
- Teaching language Swedish
- Application code 99238
- Maximum participants9
- Open for exchange studentsNo
- Only students with the course round in the programme overview.
Credit distribution
Module | Sp1 | Sp2 | Sp3 | Sp4 | Summer | Not Sp | Examination dates |
---|---|---|---|---|---|---|---|
0117 Examination 3.5 c Grading: TH | 3.5 c | ||||||
0217 Project, part A 2 c Grading: UG | 2 c | ||||||
0317 Project, part B 2 c Grading: UG | 2 c |
Examiner
- Angela Sasic Kalagasidis
- Full Professor, Building Technology, Architecture and Civil Engineering
Eligibility
General entry requirements for bachelor's level (first cycle)Applicants enrolled in a programme at Chalmers where the course is included in the study programme are exempted from fulfilling the requirements above.
Specific entry requirements
The same as for the programme that owns the course.Applicants enrolled in a programme at Chalmers where the course is included in the study programme are exempted from fulfilling the requirements above.
Course specific prerequisites
BOM230 Sound and vibrations
TME275 Mechanics
BOM265 Building technology
MVE450 Computational mathematics
MVE495 Mathematical statistics
Aim
Heavyweight and lightweight buildings store heat and reduce sound in different ways, which are described by thermal inertia and acoustic transmission of buildings. If a building is to be heavyweight or lightweight is partly determined by the climate and noise levels in the locality of the building. Today's low-energy buildings should meet high standards in these respects.
The course aims at providing understanding and knowledge about thermal and acoustic performance of residential buildings that meet the current requirements for good indoor environment and low energy consumption. It will develop the skills to evaluate various building designs, including the impact of the external environment, in terms of climate and noise. The course will also provide a common theoretical base and exercises in the design of lightweight and heavyweight apartment buildings.
The acquired knowledge and skills will provide a basis for further specializations in building technology and building acoustics.
Learning outcomes (after completion of the course the student should be able to)
- Describe current requirements for apartment building with low energy consumption in terms of their acoustical and other indoor environmental qualities.
- Explain the assumptions behind and derive and solve the energy balance equation for a building, in respect to statistical room acoustics (mechanical energy) and indoor temperature (thermal energy).
- Perform calculations with complex numbers for plane sound waves and acoustic impedance as well as for a free-running indoor temperature and thermal inertia of a building
- Evaluate different solutions for low energy apartment buildings and criticize / motivate them in terms of both acoustics and other indoor environmental qualities.
- Describe typical design solutions for load bearing and non-load bearing parts of lightweight and heavyweight buildings, in respect to the outdoor climate and the building¿s use
- Define and calculate the building's time constant to provide a basis for design of heating and cooling systems, and explain how the time constant change at e.g. renovation
- Set design conditions and perform calculations, by using thermal networks, of heating power demands in a building with respect to transmission and ventilation losses, internal heat gains and the thermal inertia of the building
- Describe the procedure, and evaluate and use the results of a blower door test to calculate the heat loss by infiltration from a building
- Describe resonance phenomena using geometrical room acoustics theory as well as explain the concepts of direct field, reverberation field and reverberation time
- Describe the working principles of different types of acoustic absorbers
- Describe and apply theory of sound transmission through single and double walls
- Show the working principles of suspended ceilings and floor constructions with respect to sound transmission
- Describe sound transmission through joints as well as other flanking transmission in buildings
- Describe the components in a building that affects the sound environment and how they interact (e.g. walls, ceilings, floors, windows, air inlets, holes, installations, ventilation systems and household machinery)
- Describe typical sound and vibration qualities of light and heavy buildings/constructions
- Carry out dimensioning calculations and simplified assessments within building acoustics and room acoustics for an apartment building
Content
Organisation
Literature
Vigran, T. Building acoustics, Taylor & Francis, New York, 2008
Examination including compulsory elements
- Approved project, parts A and B
- Approved written exam
The course syllabus contains changes
- Changes to examination:
- 2020-09-30: Grade raising No longer grade raising by GRULG
- 2020-09-30: Grade raising No longer grade raising by GRULG