Course syllabus adopted 2019-02-15 by Head of Programme (or corresponding).
Overview
- Swedish nameKonstruktionsteknik
- CodeBOM340
- Credits7.5 Credits
- OwnerTKSAM
- Education cycleFirst-cycle
- Main field of studyArchitecture and Engineering, Civil and Environmental Engineering
- DepartmentARCHITECTURE AND CIVIL ENGINEERING
- GradingTH - Pass with distinction (5), Pass with credit (4), Pass (3), Fail
Course round 1
- Teaching language Swedish
- Application code 58113
- Block schedule
- Open for exchange studentsNo
- Only students with the course round in the programme overview.
Credit distribution
Module | Sp1 | Sp2 | Sp3 | Sp4 | Summer | Not Sp | Examination dates |
---|---|---|---|---|---|---|---|
0117 Examination 4.5 c Grading: TH | 4.5 c |
| |||||
0217 Design exercise 3 c Grading: UG | 3 c |
In programmes
- TISAM - CIVIL AND ENVIRONMENTAL ENGINEERING, Year 3 (compulsory elective)
- TKSAM - CIVIL ENGINEERING, Year 3 (compulsory elective)
Examiner
- Ignasi Fernandez
- Associate Professor, Structural Engineering, Architecture and Civil Engineering
Eligibility
General entry requirements for bachelor's level (first cycle)Applicants enrolled in a programme at Chalmers where the course is included in the study programme are exempted from fulfilling the requirements above.
Specific entry requirements
The same as for the programme that owns the course.Applicants enrolled in a programme at Chalmers where the course is included in the study programme are exempted from fulfilling the requirements above.
Course specific prerequisites
Comprehensive knowledge of the behaviour of structures subjected to loads. Knowledge about important concepts within the area of structural engineering. Understanding of the structural behaviour of basic structural elements of steel, timber and reinforced concrete. Have the skills to design the moment and shear capacity in the ultimate limit state. Furthermore, knowledge and understanding of the mechanical properties of steel, timber and concrete, knowledge and understanding of basic concepts, theories and models in solid mechanics and mechanics. These prerequisites can for example have been obtained in the courses:BOM205 Buildings functions and design
BOM580 Structures
BOM195 Building materials
TME275 Mechanics
TME295 Solid mechanics
TME300 Solid mechanics
Aim
The course aims to provide a deeper understanding of structures and how to design structural elements in steel, wood and reinforced concrete. This is essential knowledge for all Civil engineers who aims to deepen their knowledge in the field of structural engineering.The course is a continuation of the parts that treated the topic structural engineering in the course buildings functions and design; and the course structures. Furthermore, the course shows how mechanics, solid mechanics and building materials can be applied in the field, and provides a general overview of the field in structural engineering. Along with advanced courses in the subject, knowledge needed is gain that engineers need to be able to design, for instance, bridges, houses and foundations to these. The course will provide students with an extension in the topic structures of buildings and facilities.
Learning outcomes (after completion of the course the student should be able to)
Content
The course covers the behaviour of simpler structural elements in steel, wood and reinforced concrete. Specially, columns subjected to axial load, or a combination of axial load and moment are treated. The course also deals with the structural design of connections and
joints such as nail, bolded and welded joints and anchoring of reinforcement. Besides this, the course also treats the behaviour in service limit state. In the course safety philosophy is considered in design; and common various loads and load combinations are considered in the design.
Later applications/deepening:
The course provides the necessary prerequisites for the courses in Structural Engineering in the master's program "Structural Engineering and Building Technology". The course contents are later applied in design and analysis of, for example, house frames and bridges including the foundation of these.