DeMeGRaS - Detection mechanisms in graphene radiation sensors

Image 1 of 1
Picture: with an example of a device
An example of the device with the completely symmetric ac-current injection favoring only thermoelectric readout mechanism (G. Skoblin, et al., APL 112, 063501 (2018))

Partners

1, coordinatorSwedenChalmers University of Technology/MC2Prof. August Yurgens Post Doc
2GermanyUniversity of Regensburg/Faculty of PhysicsProf. Sergey Ganichev Post Doc, visiting researchers
3FranceCNRS/ Laboratoire Charles Coulomb (L2C)Dr. Frédéric TeppeProf. Michel Dyakonov3 Research Engineers, Post Doc,  Visiting researchers

Motivation and plan

  • Two major detection mechanisms in graphene radiation sensors: (photo)thermoelectric- and plasma (Dyakonov-Shur, DS) mechanisms.
  • The same functional form – it is difficult to tell the mechanisms apart in the common geometries.
  • One goal is to use unusual device layouts, which favor only one mechanism at a time.
  • More clues from the THz ratchet effects and detection measurements in the magnetic field.
  • An eye on practical detectors; may be even realize a constructive action of the both mechanisms.

Data creation

epub.uni-regensburg.de; switch to English and write “FLAG-ERA” or “DeMeGRaS” in the search field​.
Samples data from Chalmers: https://doi.org/10.5281/zenodo.6412577

Outreach and other activities:

  • Travel grant of VW Stiftung supporting cooperation of German and Ukraine scientists
  • Regensburg: 2 PhD’s with great honour (S. Hubmann, M. Otteneder) plus one PhD with very good note (S. Candussio); Seminars; No exchange and travelling due to the pandemic.
  • Montpellier hired Ukrainian engineer to help the French research team and to develop his skills with novel and unique THz experimental setups in the frame of DeMeGras, and MUSE action of Montpellier University allows him to keep his job waiting for his next position.
  • Web page of the project: https://www.chalmers.se/en/departments/mc2/research/quantum-device-physics/demegras/
    The inconvenience with having a long name of the homepage is compensated by the free support offered by Chalmers IT service.
  • Graphene radiation detectors were included in the course Graphene science and technology (MCC130) of the Master’s program Nanotechnology (Chalmers University of Technology)

Publications

  1. A. Yurgens, Large Responsivity of Graphene Radiation Detectors with Thermoelectric Readout:Results of Simulations, Sensors 20, 1930 (2020);DOI: 10.3390/s20071930.
  2. S. Hubmann, V. V. Bel’kov, L. E. Golub, V. Y. Kachorovskii, M. Drienovsky, J. Eroms, D. Weiss, and S. D. Ganichev, Giant ratchet magneto-photocurrent ingraphene lateral superlattices, Phys. Rev. Res. 2, 033186 (2020); DOI: 10.1103/PhysRevResearch.2.033186.
  3. Y. Matyushkin, S. Danilov, M. Moskotin, V. Belosevich, N. Kaurova, M. Rybin, E. D. Obraztsova, G. Fedorov, I. Gorbenko, V. Kachorovskii, and S. Ganichev, Helicity-Sensitive Plasmonic Terahertz Interferometer, Nano Lett. 20, 7296 (2020); DOI: 10.1021/acs.nanolett.0c02692.
  4. Y. B. Vasiliev, S. N. Novikov, S. N. Danilov, and S. D. Ganichev, Terahertz Photoconductivity inGraphene in a Magnetic Field, Semiconductors 54, 465 (2020).
  5. K. A. Baryshnikov, Y. B. Vasilyev, S. Novikov, S. N. Danilov, and S. D. Ganichev, Terahertz photoconductivity enhancement in graphene in magnetic fields​, J. Phys. Conf. Ser. (Institute of Physics Publishing, 2020), p. 12039; DOI: 10.1088/1742-6596/1482/1/012039
  6. V. Galeeva, D. A. Belov, A. S. Kazakov, A. V. Ikonnikov, A. I. Artamkin, L. I. Ryabova, V. V. Volobuev, G. Springholz, S. N. Danilov, and D. R. Khokhlov, Photoelectromagnetic Effect Induced by Terahertz Laser Radiation in Topological Crystalline Insulators Pb1-xSnxTe, Nanomaterials 11, 3207 (2021), 11, 3207. DOI: https://doi.org/10.3390/nano11123207
  7. Y. Matyushkin, S. Danilov, M. Moskotin, G. Fedorov, A. Bochin, I. Gorbenko, V. Kachorovskii, and S. Ganichev, Carbon nanotubes for polarization sensitive terahertz plasmonic interferometry, Opt. Express 29(23), 37189 (2021); DOI: https://doi.org/10.1364/OE.435416
  8. S. Candussio, S. Bernreuter, T. Rockinger, K. Watanabe, T.Taniguchi, J. Eroms, I.A. Dmitriev, D. Weiss, and S.D. Ganichev, THz radiation induced circular Hall effect in graphene, Phys. Rev. B 105, 155416; https://doi.org/10.1103/PhysRevB.105.155416
  9. M. Otteneder, M. Hild, Z. D. Kvon, E. E. Rodyakina, M. M. Glazov, S. D. Ganichev, Highly superlinear giant terahertz photoconductance in GaAs quantum point contacts in the deep tunneling regime​, Phys. Rev. B 104, 205304 (2021).DOI:https://doi.org/10.1103/PhysRevB.104.205304
  10. S.V. Morozov, V.V. Rumyantsev, M.S. Zholudev, A A. Dubinov, V. Ya. Aleshkin, V. V. Utochkin, M. A. Fadeev, K. E. Kudryavtsev, N. N. Mikhailov, S. A. Dvoretskii, V. I. Gavrilenko, and F Teppe.  Coherent Emission in the Vicinity of 10 THz due to Auger-Suppressed Recombination of Dirac Fermions in HgCdTe Quantum Wells -  ACS Photonics 8 (12), 3526-3535 (2021) - https://doi.org/10.1021/acsphotonics.1c01111
  11. S.S. Krishtopenko, A.M. Kadykov, S. Gebert, S. Ruffenach, C. Consejo, J. Torres, C. Avogadri, B. Jouault, W. Knap, N.N. Mikhailov, S.A. Dvoretskii, and F. Teppe Many-particle effects in optical transitions from zero-mode Landau levels in HgTe quantum wells,  - Physical. Review. B 102 (4), 041404 (2020) - https://doi.org/10.1103/PhysRevB.102.041404
  12. S. Mantion, C. Avogadri, S.S. Krishtopenko, S. Gebert, S. Ruffenach, C. Consejo, S.V. Morozov, N.N. Mikhailov, S.A. Dvoretskii, W. Knap, S. Nanot, F. Teppe, B. Jouault, Quantum Hall states in inverted HgTe quantum wells probed by transconductance fluctuations, -  Physical Review B 102 (7), 075302 (2020);  - https://doi.org/10.1103/PhysRevB.102.075302
  13. M. Khan, K. Indykiewicz, P. L. Tam, and A. Yurgens, High Mobility Graphene on EVA/PET​, Nanomaterials 12, 331 (2022); https://doi.org/10.3390/nano12030331.
  14. S. Gebert, C. Consejo, S.S. Krishtopenko, S. Ruffenach, M. Szola, J. Torres, C. Bray, B. Jouault, M. Orlita, X. Baudry, P. Ballet, S.V. Morozov, V.I. Gavrilenko, N.N. Mikhailov, S.A. Dvoretskii, F. Teppe, Terahertz cyclotron emission of two-dimensional Dirac fermions, Nature Photonics (2022), accepted for publication; https://doi.org/10.21203/rs.3.rs-1630601/v1
  15. K. Indykiewicz, C. Bray, C. Consejo, F. Teppe, S. Danilov, S. D. Ganichev and A. Yurgens, Current-induced enhancement of photo-response in graphene THz radiation detectors, -AIP Advances 12, 115009 (2022); https://doi.org/10.1063/5.0117818 
  16. C. Bray, K. Maussang, C. Consejo, J. A. Delgado-Notario, S. Krishtopenko, I. Yahniuk, S. Gebert, S. Ruffenach, K. Dinar, E. Moench, K. Indykiewicz, B. Jouault, J. Torres, Y. M. Meziani, W. Knap, A. Yurgens, S. D. Ganichev, and F. Teppe, Temperature Dependent Zero-Field Splittings in Graphene, – Phys. Rev. B (2022), accepted; https://doi.org/10.48550/arXiv.2209.14001